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Abstract Let H(�) = −�
2d2/dx2 + V (x) be a Schrödinger operator on the real line,

W(x) be a bounded observable depending only on the coordinate and k be a fixed inte-
ger. Suppose that an energy level E intersects the potential V (x) in exactly two turning
points and lies below V∞ = lim inf|x|→∞ V (x). We consider the semiclassical limit n → ∞,
� = �n → 0 and En = E where En is the nth eigenenergy of H(�). An asymptotic formula
for 〈n|W(x)|n + k〉, the non-diagonal matrix elements of W(x) in the eigenbasis of H(�),
has been known in the theoretical physics for a long time. Here it is proved in a mathemati-
cally rigorous manner.

Keywords Semiclassical limit · Non-diagonal matrix elements · WKB method

1 Introduction

In the quantum mechanics the matrix elements of an observable occur in various situations.
Let us mention few of them. They measure transition probabilities between two states and
the coefficients in the stationary perturbation theory are expressed in terms of the matrix
elements of the perturbation. The distribution of matrix elements is of interest for quantum
systems stemming from classically chaotic systems, see for example [6, 9] and references
in the latter paper. Our immediate motivation to study the matrix elements was the quantum
version of the Kolmogorov–Arnold–Moser method [1, 8]. One of the assumptions under
which this method is applicable is that a time-dependent perturbation of a quantum system
must be sufficiently small with respect to certain norm which is also expressed in terms of
matrix elements.
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One may hope to obtain at least a qualitative information about the behavior of matrix
elements when considering the semiclassical limit. In fact this idea goes back to the very ori-
gins of the quantum mechanics. A semiclassical formula for non-diagonal matrix elements
in the one-dimensional case has been suggested already a long time ago [12]. In [9] one can
find another derivation, also on the level of rigor usual in the theoretical physics, for absolute
values of the non-diagonal matrix elements.

Despite of the ancient history rigorous mathematical results have been published es-
sentially more recently. Moreover, they cover only some particular cases even though the
technical tools necessary for the derivation may be at hand nowadays. One usually assumes
that the corresponding classical system is either ergodic [5, 6] or completely integrable [2,
7, 15, 19]. The semiclassical limit of diagonal matrix elements is now treated in detail [5].
In the case of multi-dimensional completely integrable systems a formula for non-diagonal
matrix elements was proved in [7, 15, 19], see also [16] for some generalizations. The one-
dimensional case seems to be rather particular. In [14] one can find a derivation of the semi-
classical formula for pseudo-differential operators in one variable such that the Weyl symbol
of the Hamiltonian is a real polynomial on the phase space while imposing an additional as-
sumption on the discreteness of the operator spectrum.

The present paper aims to provide a mathematically rigorous verification of the semiclas-
sical limit of non-diagonal matrix elements for Schrödinger operators on the real line. We
prove the formula under mild assumptions on the potential. In addition, we take care about
identifying the quantum number coming from the Bohr–Sommerfeld quantization condition
with the index determined by the natural enumeration of eigenvalues in ascending order. Our
approach relies on a transparent application of some well established tools in the spectral and
semiclassical analysis. So we briefly recall the corresponding results while adjusting their
formulation to our purposes. On the other hand, the chosen method restrict us to considering
observables which depend on the coordinate only. This particular case was sufficient for the
applications we originally had in mind, as mentioned above.

Let us now formulate precisely in what sense the semiclassical limit is understood. Set

H(�) = −�
2 d2

dx2
+ V (x) in L2(R,dx). (1)

We consider a fixed energy E and an observable W = W(x) depending only on the coordi-
nate x. The assumptions are as follows.

We suppose that V (x) is bounded from below and three times continuously differen-
tiable, W(x) is bounded and continuously differentiable,

E < V∞ := lim inf|x|→∞ V (x). (2)

We assume that at the energy E there are exactly two regular turning points, i.e., V −1(E) =
{x−, x+}, x− < x+, and V ′(x±) �= 0. Set

f (x) = V (x) − E. (3)

In addition we introduce an assumption making it possible to apply the WKB approximation,
namely we assume that

∫
R\[−a,a]

∣∣∣∣ 1

f 1/4

d2

dx2

(
1

f 1/4

)∣∣∣∣dx < ∞ (4)
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where a is a positive number chosen so that f (x) ≥ δ > 0 for |x| ≥ a. Notice that

1

f 1/4

d2

dx2

(
1

f 1/4

)
= 5(V ′)2 − 4(V − E)V ′′

16(V − E)5/2
.

It may be convenient to replace condition (4) by two simpler conditions,

∫
R\[−a,a]

|V ′|2
(V − E)5/2

dx < ∞,

∫
R\[−a,a]

|V ′′|
(V − E)3/2

dx < ∞. (5)

The part of the spectrum of H(�) lying below V∞ is known to be formed exclusively of
simple isolated eigenvalues. We fix the phase of an eigenfunction ψn corresponding to an
eigenvalue En < V∞ by requiring ψn to be positive on a neighborhood of +∞. Moreover,
there exists a strictly decreasing sequence of positive numbers tending to 0, {�n}∞

n=n0
, and a

constant �0 > 0 such that for � ∈]0,�0], E belongs to the spectrum of H(�) if and only if
� = �n and in that case E = En is the nth eigenvalue of H(�) provided the enumeration of
eigenvalues starts from the index n = 0.

Under these assumptions we claim that if k ∈ Z is fixed, n → ∞, � = �n → 0, with
E = En, then

〈n|W(x)|n + k〉 → 1

T

∫ T

0
W(q(t))eikωt dt (6)

where (q(t),p(t)), t ∈ [0, T ], is the classical trajectory in the phase space at the energy E

and with the initial point chosen so that the kinetic energy vanishes, i.e., p(0) = 0, and q(0)

coincides the right turning point x+. Furthermore, T > 0 is the period of the classical motion
and ω = 2π/T is the frequency.

Remark If the phase of the wave function ψn was chosen so that ψn was positive on a
neighborhood of −∞ then formula (6) would be again true with (q(0),p(0)) = (x−,0).

As already said, we have confined ourselves to observables depending only on the co-
ordinate because our method of proof is based on the WKB approximation. One naturally
expects, however, that for any smooth bounded classical observable A(q,p),

〈n|Â|n + k〉 → 1

T

∫ T

0
A(q(t),p(t))eikωtdt

where Â is a suitable quantization of A. We have already mentioned that this result is actu-
ally proved in [14] in the case when the potential V (x) is a polynomial.

Let us rewrite the RHS in formula (6). The equation of the classical trajectory in the
phase space reads p2 + V (x) = E and its period equals

T =
∫ x+

x−

dx√
E − V (x)

. (7)

For x ∈ [x−, x+] set

τ(x) = 1

2

∫ x+

x

dy√
E − V (y)

. (8)
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Then τ(x+) = 0, τ(x−) = T/2, q(τ(x)) = x, and

∫ T

0
W(q(t))eikωt dt =

∫ x+

x−

W(x)√
E − V (x)

cos

(
2πk

T
τ(x)

)
dx.

The paper is organized as follows. In Sects. 2 through 4 we recall some preliminaries that
we need for the proof of the formula. Section 2 is devoted to the basic spectral properties
of the Schrödinger operator, Sect. 3 is concerned with the Weyl asymptotic formula and
some basic facts about the WKB approximation are summarized in Sect. 4. By counting
the zeroes of wave functions we show in Sect. 5 that the quantum number coming from the
Bohr–Sommerfeld quantization condition equals the index of the corresponding eigenvalue.
The semiclassical formula is then proved in Sect. 6.

2 Properties of the Spectrum Lying Below V∞

Here we briefly recall two well known properties of Schrödinger operators. In the mono-
graphs they are usually formulated and derived for potentials diverging at infinity. We just
wish to point up that the same assertions apply also for more general potentials provided one
takes care only about the part of the spectrum lying below V∞. The corresponding proofs
can be taken almost literally from the cited monographs.

In this section (and only in it) the Planck constant is not relevant and so we set it equal to
1 and consider the Hamiltonian

H = − d2

dx2
+ V (x) in L2(R,dx).

The following theorem is in fact widely used. We recall it in a form which is a direct
modification of Theorem XIII.16 in [17]. Its proof is based on the min-max principle and is
applicable in any dimension of the underlying Euclidean space. Moreover, the differentia-
bility of V (x) is not required.

Theorem 1 Let V be a measurable function in R
n which is bounded from below. Define

H = −Δ + V as the sum of quadratic forms in L2(Rn,dnx). Then the lower edge of the
essential spectrum of H , if any, is greater than or equal to V∞ = lim inf|x|→∞ V (x).

Let us note that in the one-dimensional case and provided the potential is continuous
Theorem 1 also follows from a well known estimate on the number of negative eigenvalues.

Here and everywhere in what follows, if A is a self-adjoint operator then P (A; ·) desig-
nates the associated projector-valued measure, and for K ∈ R we denote

N(A,K) = rankP (A; ]−∞,K[).
Further, for a real-valued function W(x) we set

W−(x) = max{0,−W(x)}.
It holds (see, for example, Theorem 5.3 in [3])

N(H,0) ≤ 1 +
∫

R

|x|V−(x)dx.
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In particular, if V (x) is continuous and bounded from below then for any c < V∞ the func-
tion (V − c)−(x) has a compact support and, by this estimate, N(H,c) < ∞. This again
implies that the lower edge of the essential spectrum of H is greater than or equal to V∞.

The next property is specific for the one-dimensional case. The potential V (x) is sup-
posed to be continuous and bounded from below.

As is well known from the theory of ordinary differential equations, for E < V∞, any
nontrivial solution of the Schrödinger equation either grows at least exponentially or decays
at least exponentially at +∞ (see, for example, Corollary 1 in [3, Sect. II]). The latter
solution is called recessive at +∞ and is unique up to a multiplicative constant. Of course,
an analogous assertion is also true for −∞. It immediately follows that all eigenvalues of
the Hamiltonian H lying below V∞ are simple. Moreover, in virtue of Theorem 1, they have
no accumulation points below V∞. Consequently, the eigenvalues of H below V∞ can be
arranged into a strictly increasing sequence, empty or finite or infinite,

E0 < E1 < E2 < · · · < V∞.

The following theorem is a straightforward modification of Theorem 3.5 in [3, Chap. II].

Theorem 2 The number of zeroes of the mth eigenfunction of H corresponding to the eigen-
value Em < V∞ is exactly equal to m.

3 The Weyl Asymptotic Formula

In this section we aim to recall the Weyl asymptotic formula generalized to Schrödinger
operators. It can be derived from the Gutzwiller trace formula [10] which was rigorously
proved in [4] under the assumption that the potential is positive and infinitely differentiable.
In [18] there is given a short review of the history and the Weyl asymptotic formula is
recalled even under stricter assumptions which among others mean that the potential does
not grow faster than polynomially. A weaker version of the formula is also stated in [17,
Theorem XIII.79] but only for compactly supported potentials.

Here we wish to point out that the proof of Theorem XIII.79 in [17] can be extended in
a straightforward manner and thus the Weyl asymptotic formula can be derived just under
the assumption that the potential is semi-bounded and continuous. We restrict ourselves,
however, to the one-dimensional case only. In addition, this approach is quite simple as
it is based merely on an application of the min-max principle and the Dirichlet–Neumann
bracketing. On the other hand, if compared to the result based on the trace formula, as
presented in [18], the control of the error term is essentially worse; it is known to be of order
O(1) while the present method only yields the asymptotic behavior of the type o(�−1).

From now on, the Planck constant is again relevant. This means that the discussion con-
cerns the Hamiltonian H(�) introduced in (1). Since what follows is nothing but a slight
modification of known results we just indicate the basic steps.

First let us recall a definition from [17, XIII.15] making it possible to compare self-
adjoint operators defined in different Hilbert spaces. The symbol Q(A) stands for the form
domain of A. If ψ ∈ Q(A) then the scalar product 〈ψ,Aψ〉 is automatically understood in
the form sense.

Definition Let H1 ⊂ H be a closed subspace, let A be a semi-bounded self-adjoint operator
in H and let B be a semi-bounded self-adjoint operator in H1. We shall write A ≤ B if and
only if it holds
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1. Q(A) ⊃ Q(B),
2. ∀ψ ∈ Q(B), 〈ψ,Aψ〉 ≤ 〈ψ,Bψ〉.

With the aid of the min-max principle one can show [17, XIII.15] that if A ≤ B then

1. ∀K ∈ R, rankP (A; ]−∞,K[) ≥ rankP (B; ]−∞,K[),
2. ∀K ∈ R, rankP (A; ]−∞,K]) ≥ rankP (B; ]−∞,K]).

The following lemma is analogous to Proposition 2 in [17, XIII.15] in the one-
dimensional case and its proof is based on rather elementary explicit computations of the
eigenvalues for the involved operators.

Lemma 1 Let I = [a, b] be a compact interval. Let us introduce HD , HN and HM as
self-adjoint operators in L2(I,dx) such that all of them act as the differential operator
−�

2 d2/dx2 and whose domain is respectively determined by the Dirichlet, Neumann and
mixed boundary conditions. Then for all K > 0 it holds

−1 ≤ rankP (H ; ]−∞,K[) − �

π�

√
K ≤ rankP (H ; ]−∞,K]) − �

π�

√
K ≤ 1,

where H is any of the operators HD , HN , HM , and � = b − a is the length of the interval.

The following lemma coincides with Proposition 4 in [17, XIII.15] in the one-
dimensional case.

Lemma 2 Let −∞ < a < b < c < +∞ and let H be a self-adjoint operator in
L2([a, c],dx) which acts as the differential operator −d2/dx2 with either the Dirichlet
or the Neumann boundary condition imposed at each of the points a and c (mixed boundary
conditions are admitted). Let H

(1)
D and H

(1)
N be the self-adjoint operators in L2([a, b],dx)

also acting as −d2/dx2 and with the domain being determined by the same boundary condi-
tion at the point a as imposed in the case of the operator H and by the Dirichlet or Neumann
boundary condition at the point b, respectively. Analogously one introduces the self-adjoint
operators H

(2)
D and H

(2)
N in L2([b, c],dx). Then it holds

H
(1)
N ⊕ H

(2)
N ≤ H ≤ H

(1)
D ⊕ H

(2)
D .

First let us state the Weyl asymptotic formula for a finite interval. It can be prover in a
way very close to the proof of Theorem XIII.79 in [17]. So we do not reproduce the proof but
let us note that it is based on a limit procedure when the interval is split into N subintervals
of equal length with N tending to ∞. In the course of the proof one uses Lemma 1 and 2,
the additivity of the numbers N(A,K), i.e.,

N(A1 ⊕ A2 ⊕ · · · ⊕ AN,K) = N(A1,K) + N(A2,K) + · · · + N(AN,K),

and the fact that the integral on the RHS of (9) exists in the Riemann sense.

Theorem 3 Let −∞ < a < b < +∞, V ∈ C([a, b]), and let

Hf (�) = −�
2 d2

dx2
+ V (x)
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be a self-adjoint operator in L2([a, b],dx) with either the Dirichlet or Neumann boundary
condition imposed at each of the boundary points a and b (mixed boundary conditions are
admitted). Then for all K ∈ R,

lim
�→0+

�N(Hf (�),K) = 1

π

∫ b

a

√
(V − K)−(x)dx. (9)

Finally let us proceed to the case of the Hamiltonian H(�).

Theorem 4 Let V ∈ C(R) be a real-valued function which is bounded from below. Then for
all K < V∞ it holds true that

lim
�→0+

�N(H(�),K) = 1

2π
VolZ(H−1(]−∞,K[)) = 1

π

∫
R

√
(V − K)−(x)dx (10)

where H(x,p) = p2 +V (x) and VolZ(X) designates the Lebesgue measure of a measurable
set X in the phase space.

Proof If K < V∞ then the support of (V − K)− is compact. Suppose that supp(V − K)− ⊂
[a, b], −∞ < a < b < +∞. Set

H1(�) = −�
2 d2

dx2
− (V − K)−(x) in L2(R,dx)

and

H2(�) = −�
2 d2

dx2
+ V (x) − K in L2([a, b],dx)

with the Dirichlet boundary condition imposed at the points a and b. Observe that −(V −
K)−(x) ≤ V (x) − K on R and so Q(H(�) − K) ⊂ Q(H1(�)). Furthermore, L2([a, b],dx)

can be naturally regarded as a subspace in L2(R,dx). If ψ ∈ Q(H2(�)) then ψ̃ defined by
ψ̃(x) = ψ(x) for x ∈ [a, b], ψ̃(x) = 0 for x ∈ R \ [a, b], belongs to Q(H(�) − K) (ψ̃ is
an absolutely continuous function). This implies that Q(H2(�)) ⊂ Q(H(�) − K). We have
find that H1(�) ≤ H(�) − K ≤ H2(�). Hence

N(H2(�),0) ≤ N(H(�),K) ≤ N(H1(�),0).

Formula (10) for compactly supported potentials is stated in [17, Theorem XIII.79].
Hence it holds

lim
�→0+

�N(H1(�),0) = 1

π

∫
R

√
(V − K)−(x)dx,

and from Theorem 3 we know that

lim
�→0+

�N(H2(�),0) = 1

π

∫ b

a

√
(V − K)−(x)dx = 1

π

∫
R

√
(V − K)−(x)dx.

Formula (10) for a general potential then follows by bracketing. �

For our purposes the following immediate corollary of Theorem 4 will be sufficient. Sup-
pose that V (x) is continuously differentiable and an interval ]a, b[, a < b ≤ V∞, contains



Int J Theor Phys (2007) 46: 2688–2707 2695

at least one regular value of the classical Hamiltonian H(x,p), i.e., there exists λ ∈]a, b[
satisfying H−1({λ}) �= ∅ and V (x) = λ implies V ′(x) �= 0. Then the number of eigenvalues
of H(�) in the interval ]a, b[ tends to infinity as � → 0+.

4 The WKB Method for One and Two Turning Points

Here we summarize some basic facts about the WKB approximation, also called Liouville–
Green approximation, that we need for the proof of the formula in Sect. 6. At the same time
we introduce the necessary notation. We stick to the presentation given in the monograph
[13] whose distinguished feature is that it provides explicit bounds on the error terms.

Let us first consider the situation with one turning point. Let ]a, b[⊂ R be an inter-
val, finite or infinite, x0 ∈]a, b[, and f (x) be a real-valued function defined on ]a, b[ such
that f (x)/(x − x0) is positive and twice continuously differentiable (hence f (x0) = 0,
f ′(x0) > 0). For x ∈]a, b[ set

2

3
ζ 3/2 =

∫ x

x0

√
f (t)dt if x ≥ x0, (11a)

2

3
(−ζ )3/2 =

∫ x0

x

√−f (t)dt if x < x0. (11b)

Then ζ(x) is strictly monotone, ζ(x)/(x − x0) is positive and twice continuously differen-
tiable in ]a, b[, see Lemma 3.1 in [13, Chap. 11].

Assume further that ∫ b

x0

√
f (t)dt = ∞ (12)

and ∫
]a,b[ \U0

|f ′′|
|f |3/2

dt < ∞,

∫
]a,b[ \U0

(f ′)2

|f |5/2
dt < ∞, (13)

where U0 = [x0 −ε, x0 +ε] and ε is any positive number such that a < x0 −ε and x0 +ε < b.
Notice also that

ζ ′ =
(

f

ζ

)1/2

and ζ ′(x0) = f ′(x0)
1/3. (14)

Denote by ξ the inverse function to ζ . Theorem 3.1 in [13, Chap. 11, §3.3] can be rephrased
as follows.

Theorem 5 Under the above assumptions, the solution of the differential equation

�
2 d2w

dx2
= f (x)w (15)

which is recessive as x tends to b exists on ]a, b[, is unique up to a multiplicative constant
and equals

ψ(x) =
(

ζ

f

)1/4

(Ai(�−2/3ζ ) + ε(�, x)) (16)
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with the error term satisfying the estimates

|ε(�, x)| ≤ Φ0(�
−2/3ζ )�,

∣∣∣∣∂ε(�, x)

∂x

∣∣∣∣ ≤
(

f

ζ

)1/2

Φ1(�
−2/3ζ )�

1/3,

where Φ0(x), Φ1(x) are certain continuous positive functions on R such that

Φ0(x) ∼

⎧⎪⎨
⎪⎩

const · exp(− 2
3 x3/2)

x1/4 as x → +∞,

const · 1
|x|1/4 as x → −∞,

Φ1(x) ∼
{

const · exp
(− 2

3x3/2
)

as x → +∞,

const as x → −∞.

Let us now turn to the case when f (x) is given by (3) and so is defined on the entire real
line. From now on the potential V satisfies all assumptions as formulated in the Introduction.
In particular, it follows that the function

V (x) − E

(x − x−)(x − x+)
is positive on R and belongs to C2(R). (17)

Moreover, there exists an open neighborhood of E, UE =]E−,E+[, E− < E < E+, such
that these assumptions apply for any λ ∈ UE as well.

For λ ∈ UE set

γλ = H−1({λ})
where H(x,p) = p2 + V (x). Thus γλ is a closed curve in the phase space and the energy
takes on it the value λ. Let us further introduce the action integral,

J (λ) =
∫

H(x,p)≤λ

dxdp =
∫

γλ

p dx = 2
∫ x+(λ)

x−(λ)

√
λ − V (x)dx (18)

where x−(λ) < x+(λ) are the turning points at the energy λ. Then

T (λ) = J ′(λ) =
∫ x+(λ)

x−(λ)

dx√
λ − V (x)

(19)

is the period of the classical trajectory in the phase space.
In the following theorem we summarize the result derived in [13, Chap. 13, §8.2].

Theorem 6 Under the assumptions on V formulated in the Introduction (in particular, we
assume that condition (17) is fulfilled as well as the convergence of the integrals in (5)) there
exist a neighborhood UE of E, �0 > 0, n0 ∈ N and for every λ ∈ UE a sequence {�n(λ)}∞

n=n0
,

�0 > �n0(λ) > �n0+1(λ) > �n0+2(λ) > · · · > 0, such that for � ∈]0,�0[ the energy λ is an
eigenvalue of H(�) if and only if � = �n(λ) for some n ≥ n0. Moreover, the sequence {�n(λ)}
asymptotically behaves like

�n(λ)−1 = (2n + 1)πJ (λ)−1 + O(n−1) (20)

where the error term O(n−1) decays in n uniformly with respect to λ ∈ UE .
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Remark It is known that if V ∈ Cr(R), with r ≥ 1, and E < V∞ is a regular value of V (x)

then the action integral J (λ) defined in (18) is r times continuously differentiable on some
neighborhood of E (see, for example, [18]).

The verification of this assertion is quite elementary in the one-dimensional case and with
two turning points at the energy E. For a sufficiently small neighborhood UE =]E−,E+[ the
function V (x) is strictly decreasing on the interval [x−(E+), x−(E−)] and strictly increasing
on [x+(E−), x+(E+)], with nowhere vanishing derivative. Let us write

T (λ) =
(∫ x−(E−)

x−(λ)

+
∫ x+(E−)

x−(E−)

+
∫ x+(λ)

x+(E−)

)
dx√

λ − V (x)

= T−(λ) + T0(λ) + T+(λ).

Clearly, T0(λ) ∈ C∞(UE). Thus it is sufficient to verify that T−(λ), T+(λ) ∈ Cr−1(UE). Let
us focus only on the latter function. Set W+ = (V |[x+(E−),x+(E+)])−1. Hence W+ is r times
continuously differentiable. After some elementary manipulations one can show that

T+(λ) =
∫ x+(λ)

x+(E−)

dx√
λ − V (x)

= 2
√

λ − E−
∫ 1

0

dt

V ′(W+(λ(1 − t2) + E−t2))
.

From the last expression it is obvious that T+(λ) is r − 1 times continuously differentiable.

5 Number of Zeroes Derived from the WKB Method

We need to show that if � = �m(λ) and hence λ is an eigenvalue of H(�), as claimed in
Theorem 6, then λ is exactly the mth eigenvalue of H(�). According to Theorem 2, the
index of an eigenvalue lying below V∞ equals the number of zeroes of the corresponding
eigenfunction. Fortunately, the WKB approximation, as explained in [13], is precise enough
to control the number of zeroes.

Let us recall some facts concerning the Airy functions. Let us denote by an and bn the
zeroes of the Airy functions Ai(x) and Bi(x), respectively, arranged in ascending order of
the absolute value, i.e., · · · < b3 < a2 < b2 < a1 < b1 < 0. It is known that

an = −
(

3

2
π

(
n − 1

4

)
+ Z

(
n − 1

4

))2/3

,

(21)

bn = −
(

3

2
π

(
n − 3

4

)
+ Z

(
n − 3

4

))2/3

,

where Z(x) = O(x−1).
First we again consider the situation with one turning point. Recall defining relations

(11a), (11b) for ζ . In the following theorem we summarize the results from §§ 6.1, 6.2 and
6.3 in [13, Chap. 11].

Theorem 7 Under the same assumptions as in Theorem 5, let w(x) be a nonzero solution
of the differential equation (15) on ]a, b[ which is recessive as x tends to b (hence w(x)

is unique up to a multiplicative constant). Then the set of zeroes of w(x) in ]a, b[, denoted
{zn}n≥1 and arranged in descending order, is at most countable. Any such a zero z fulfills
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ζ(z) < �
2/3b1. Furthermore, for all sufficiently small � it is true that if ζ(a) < �

2/3bn+1 then
the nth zero, zn, does exist and obeys the estimate

�
2/3bn+1 < ζ(zn) < �

2/3bn.

Moreover, it holds

|ζ(zn) − �
2/3an| = O(n−1/3)�

where the symbol O(n−1/3) is uniform with respect to �.

Remark From Theorem 7 it immediately follows that there are no zeroes in the interval
[x0, b[. Furthermore, the number of zeroes of w(x) in any fixed nonempty subinterval
]c, d[⊂ ]a, x0[ tends to infinity as � → 0+.

Now we come back to the case when f (x) is given by (3), with V (x) satisfying the as-
sumptions from the Introduction. In particular, there are two turning points at the energy E,
x− and x+, and V (x) satisfies (17) and (5). Then for any a, x− < a < x+, the function f (x)

satisfies the assumptions of Theorem 7 with b = +∞ and x0 being replaced by x+. Actu-
ally, condition (5) implies (13) and condition (12) is fulfilled automatically for E < V∞.
Analogous arguments apply also for the other turning point x−.

According to Theorem 6 there exist �0 > 0 and a sequence {�n}∞
n=n0

, �0 > �n0 > �n0+1 >

�n0+2 > · · · > 0, such that for � ∈]0,�0[, E is an eigenvalue of H(�) if and only � = �n for
some n ≥ n0. Let ψn(x) be an eigenfunction of H(�n) corresponding to the eigenvalue E.
Thus ψn(x) is recessive both at +∞ and −∞ and is unique up to a multiplicative constant.
We can suppose that �0 is sufficiently small so that ψn(x) has at least one zero in the interval
]x−, x+[. By Theorem 7, ψn(x) has no zeroes in the set R\ ]x−, x+[.

Let us choose a point x1 ∈]x−, x+[ independently of n. Let x ′
1 be the zero of ψn which is

nearest to x1. This means that x ′
1 depends on n but the distance between x1 and x ′

1 tends to
zero as n tends to infinity. Denote by m+ and m− the number of zeroes of ψn in the interval
[x ′

1, x+[ and ]x−, x ′
1], respectively (hence the zero x ′

1 is counted both in m+ and m−). Denote
by ζ+(x) the function defined by relations (11a) and (11b), with x0 being replaced by x+. In
virtue of Theorem 7, there exists a constant c+ ≥ 0 (independent of n) such that

|ζ+(x ′
1) − �

2/3
n am+| ≤ c+�n

m
1/3
+

for all n ≥ n0. An application of the mean value theorem,

|u3/2 − v3/2| ≤ 3

2
(max{u,v})1/2|u − v| for u > 0, v > 0,

yields the inequality

||ζ+(x ′
1)|3/2 − �n|am+|3/2| ≤ 3

2

(
3

2

∫ x+

x−

√
E − V (x)dx

)1/3
c+�n

m
1/3
+

(22)

which is valid for all sufficiently large n. Analogously, for the other turning point we get the
estimate

||ζ−(x ′
1)|3/2 − �n|am−|3/2| ≤ 3

2

(
3

2

∫ x+

x−

√
E − V (x)dx

)1/3
c−�n

m
1/3
−

(23)
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where again c− ≥ 0 is a constant independent of n. Set

c =
(

3

2

∫ x+

x−

√
E − V (x)dx

)1/3

max{c−, c+}.

Combining (22) and (23) we arrive at the inequality
∣∣∣∣ 1

�n

∫ x+

x−

√
E − V (x)dx − 2

3
(|am−|3/2 + |am+|3/2)

∣∣∣∣ ≤ c

(
1

m
1/3
−

+ 1

m
1/3
+

)
.

Let m = m(n) be the number of zeroes of ψn(x). Obviously, m = m− +m+ −1. Recalling
the asymptotic behavior of �n, as stated in (20) (see also (18)), as well as the asymptotic
formulas (21) for the roots of the Airy functions we finally find that

∣∣∣∣n − m + O(n−1) − Z

(
m− − 1

4

)
− Z

(
m+ − 1

4

)∣∣∣∣ ≤ c

π

(
1

m
1/3
−

+ 1

m
1/3
+

)
.

By Theorem 7, both m− and m+ tend to infinity as n tends to infinity. This implies that
m(n) = n for all sufficiently large n and therefore, in virtue of Theorem 2, E is the nth
eigenvalue of the Hamiltonian H(�n) (with the numbering starting from n = 0).

All estimates can be carried out in a uniform manner for E being replaced by λ running
over some neighborhood of E. We conclude that with the assumptions on V (x) formulated
in the Introduction, there exist n0 ∈ N and a neighborhood UE of E such that for all n ≥ n0

and λ ∈ UE , λ equals exactly the nth eigenvalue of H(�n(λ)) (with �n(λ) introduced in
Theorem 6).

6 Proof of the Formula

Here we prove the limit (6). We know that there exists a sequence of positive numbers,
{�n}∞

n=n0
, such that E is the nth eigenvalue of H(�n) (Theorem 6). This sequence is strictly

decreasing and tends to 0. We even known that �n ∼ n−1 as n → ∞ (see (20)). There-
fore everywhere in what follows the symbol O(�) should be understood as a substitute for
O(n−1).

Let us fix x1, x
′
1, x

′′
1 ∈]x−, x+[, x ′

1 < x1 < x ′′
1 . For a given � = �n we shall denote by ψ a

conveniently normalized eigenfunction corresponding to the eigenvalue E = En. Hence ψ

is recessive both at +∞ and −∞. The normalization is fixed by requiring the eigenfunction
ψ to coincide on the interval ]x ′

1,+∞[ with the solution described in Theorem 5 (with
f (x) = V (x) − E and x0 = x+ being the single turning point in this interval). Theorem 5 is
also applicable to the interval ]−∞, x ′′

1 [ containing the turning point x−. On this interval, ψ

equals κ times the solution described in Theorem 5 for some κ ∈ C \ {0}.
There exists a neighborhood of E, UE =]E−,E+[, such that any λ ∈ UE satisfies the

same assumptions as those imposed on E. Recall that we have fixed k ∈ Z. For all suffi-
ciently large n, the (n + k)th eigenvalue of H(�n), called En+k , exists and lies in UE . For
brevity we shall denote En+k sometimes by Ẽ. We show below that Ẽ − E = O(�), see
(24). The eigenfunction of H(�n) corresponding to the eigenvalue Ẽ = En+k and coincid-
ing on ]x ′

1,+∞[ with the solution from Theorem 5 will be denoted by ψ̃ . In this case, too,
there exists κ̃ ∈ C \ {0} such that on the interval ]−∞, x ′′

1 [ , ψ̃ equals κ̃ times the solution
from Theorem 5. Furthermore, denote by x̃± the turning points corresponding to Ẽ, i.e.,
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V (x̃±) = Ẽ. Since V (x̃±)−V (x±) = Ẽ −E and V ′(x±) �= 0 it is clear that x̃± −x± = O(�)

as well.
The verification of (6) is based on a series of estimates relying on Theorem 5. This will

be done in several steps.
(1) Relation between Ẽ and E. et Em(�) be the mth eigenvalue of H(�). From the per-

turbation theory [11] one deduces that if it exists and lies below V∞ then Em(�) is strictly
increasing and real analytic as a function of �. According to the conclusion of Sect. 5, Em(�)

and �m(λ) are mutually inverse functions. Therefore if � = �n(E) then � = �n+k(Ẽ). Thus
we have

�n(E) = �n+k(Ẽ)

and from the asymptotic formula (20) we get

(2n + 2k + 1)J (E) − (2n + 1)J (Ẽ) = O(n−1).

Since

J (Ẽ) = J (E) + ∂J (E)

∂λ
(Ẽ − E) + O((E′ − E)2)

we finally arrive at the equation

2k

2n + 1

J (E)

T (E)
− Ẽ + E = O(n−2) + O((Ẽ − E)2)

whose solution satisfies

Ẽ = E + J (E)

T (E)

k

n
+ O(n−2). (24)

(2) Asymptotic behavior of κ and κ̃ . On the interval ]x ′
1, x

′′
1 [ one can compare the asymp-

totics of the solutions which are respectively recessive at +∞ and −∞ and infer this way
the asymptotic behavior of κ as � → 0. For a moment we shall distinguish by a subscript
the functions ζ± related to the turning points x± and defined respectively on the intervals
[x ′

1,+∞[ and ]−∞, x ′′
1 ]. Thus

2

3
|ζ+|2/3 =

∣∣∣∣
∫ x

x+
|f (t)|dt

∣∣∣∣, 2

3
|ζ−|2/3 =

∣∣∣∣
∫ x−

x

|f (t)|dt

∣∣∣∣,

and both ζ+/f and ζ−/f are positive functions on their domains. We have

ψ(x) =
(

ζ+
f

)1/4

(Ai(�−2/3ζ+) + ε+(�, x))

for x ≥ x ′
1, and

ψ(x) = κ

(
ζ−
f

)1/4

(Ai(�−2/3ζ−) + ε−(�, x))

for x ≤ x ′′
1 . Suppose that x ∈ [x ′

1, x
′′
1 ]. Recalling that

Ai(−z) = 1

π1/2z1/4

(
cos

(
2

3
z3/2 − π

4

)
+ O(z−3/2)

)
as z → +∞ (25)
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and the error term estimates from Theorem 5 we arrive at the equality

cos

(
2

3
�

−1|ζ+|3/2 − π

4

)
+ O(�) = κ

(
cos

(
2

3
�

−1|ζ−|3/2 − π

4

)
+ O(�)

)
.

Furthermore, in virtue of (20) it holds

2

3
�

−1(|ζ+|2/3 + |ζ−|2/3) = �
−1

∫ x+

x−
|f (t)|dt =

(
n + 1

2

)
π + O(�).

Combining the last two equalities we find that

cos

(
2

3
�

−1|ζ+|3/2 − π

4

)
+ O(�) = κ

(
(−1)n cos

(
2

3
�

−1|ζ+|3/2 − π

4

)
+ O(�)

)
.

For � sufficiently small it clearly exists x ∈ [x ′
1, x

′′
1 ] such that

cos

(
2

3
�

−1|ζ+|3/2 − π

4

)
= 1.

It follows immediately that

κ = (−1)n + O(�). (26)

Similarly,

κ̃ = (−1)n+k + O(�). (27)

(3) The leading asymptotic term on the interval ]x+ − δ,∞[. Fix δ > 0 sufficiently small
(at least x1 < x+ − δ). Let us show that

∫ ∞

x+−δ

ψ2 dx = δ1/2O(�1/3),

∫ x−+δ

−∞
ψ2 dx = δ1/2O(�1/3). (28)

We shall verify only the first equality in (28). In view of (26) and (27), the verification of
the second one is analogous.

Here and everywhere in what follows the symbol O(�ε) should be interpreted properly.
It means that there exists a constant c ≥ 0 (independent of δ) and �0(δ) > 0 such that for all
�, 0 < � < �0(δ), it holds |O(�ε)| ≤ c�

ε .
First let us estimate the contribution from the leading asymptotic term of ψ . Applying

the substitution x = ξ(�2/3z) we get the expression

∫ ∞

x+−δ

(
ζ

f

)1/2

Ai(�−2/3ζ )2 dx = �
4/3

∫ ∞

�−2/3ζ(x+−δ)

z

f (ξ(�2/3z))
Ai(z)2 dz. (29)

By the assumptions, there exist x2 > x+ and c1 > 0 such that f (x) ≥ c1 for x ≥ x2. The
function ζ(x)/f (x) is continuous on the interval [x1, x2] and therefore it is majorized on
this interval by a constant c2 ≥ 0. This also means that

0 <
y

f (ξ(y))
≤ c2 for ζ(x1) ≤ y ≤ ζ(x2).
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This way we get the following upper bound on (29), namely

�
2/3

∫
�

−2/3ζ(x2)

�−2/3ζ(x+−δ)

c2 Ai(z)2 dz + �
4/3

∫ ∞

�−2/3ζ(x2)

z

c1
Ai(z)2 dz

≤ c2�
2/3(Ai′(x)2 − x Ai(x)2)|x=�−2/3ζ(x+−δ) + o(�4/3).

Here we have used the knowledge of the primitive function
∫

Ai(x)2 dx = x Ai(x)2 − Ai′(x)2.

In addition to formula (25) let us recall also the asymptotic behavior of the derivative of the
Airy function,

Ai′(−z) = z1/4

π1/2

(
sin

(
2

3
z3/2 − π

4

)
+ O(z−3/2)

)
as z → +∞. (30)

Since ζ(x+ − δ) = −ζ ′(y)δ for some y ∈ [x+ − δ, x+] we find that for x = �
−2/3ζ(x+ − δ)

it holds

|�2/3 Ai′(x)2| ≤ const · �
2/3(�−2/3δ)1/2 = const · �

1/3δ1/2

and

|�2/3x Ai(x)2| ≤ const · �
2/3

�
−2/3δ(�−2/3δ)−1/2 = const · �

1/3δ1/2.

We have shown that

∫ ∞

x+−δ

(
ζ

f

)1/2

Ai(�−2/3ζ )2 dx = δ1/2O(�1/3).

(4) The error term on the interval ]x+ − δ,∞[. Further let us write

ψ2 =
(

ζ

f

)1/2

Ai(�−2/3ζ )2 + ε2(�, x).

It is known that

Ai(x) ≤ 1

2
√

π
x−1/4 exp

(
−2

3
�

−1x3/2

)
for x > 0,

see [13, Chap. 11]. Using also the estimates of error terms from Theorem 5 one can check
that

|ε2(�, x)| ≤ const · f −1/2 exp

(
−4

3
�

−1ζ 3/2

)
�

4/3 for x > x+.

It follows that
∣∣∣∣
∫ ∞

x+
ε2(�, x)dx

∣∣∣∣ ≤ const · �
4/3

∫ ∞

x+
f −1/2 exp

(
−4

3
�

−1ζ 3/2

)
dx

= const · �
4/3

∫ ∞

0

y1/2

f (ξ(y))
exp

(
−4

3
�

−1y3/2

)
dy. (31)
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There exists c ≥ 0 such that for y > 0, f (ξ(y))−1 ≤ c(1 + y−1). Hence (31) is majorized by

const · �
4/3

∫ ∞

0
(y1/2 + y−1/2) exp

(
−4

3
�

−1y3/2

)
dy = O(�5/3).

The asymptotic formula (25) implies that |Ai(x)| ≤ const |x|−1/4 for x < 0. Recalling
once more Theorem 5 we have

∣∣∣∣
∫ x+

x1

ε2(�, x)dx

∣∣∣∣ ≤ const · �
4/3

∫ x+

x1

|f |−1/2 dx = O(�4/3). (32)

This concludes the verification of (28).
(5) Oscillating integral on the interval ]x1, x+ − δ[. By the usual integration by parts one

can verify the following claim.

Claim Let [a, b] be a compact interval, F ∈ C1([a, b]), μ ∈ C2([a, b]) and ν(�, z) be twice
continuously differentiable in z on [a, b]. Assume that μ′(z) nowhere vanishes on [a, b] and

sup
z∈[a,b]

|∂zν(�, z)| = O(1), sup
z∈[a,b]

|∂2
z ν(�, z)| = O(1).

Then for all sufficiently small � it holds true that

∣∣∣∣
∫ b

a

F (z) sin(�−1μ(z) + ν(�, z))dz

∣∣∣∣ ≤ const �

where the constant depends only on the length of the interval [a, b] and on the quantities

μ−1
0 ‖F‖C, μ−2

0 ‖F‖C‖μ′′‖C, μ−1
0 ‖F ′‖C,

with

μ0 = min
z∈[a,b]

|μ′(z)|

and ‖ · ‖C standing for the norm in the Banach space C([a, b]).

As a consequence we find that if W ∈ C1(R) then

∫ x+−δ

x1

W√
E − V

sin

(
2

3
�

−1(|ζ |3/2 + |ζ̃ |3/2)

)
dx = δ−1O(�). (33)

To show this asymptotics it suffices to set in the above claim F = W/
√

E − V , μ =
(4/3)|ζ |3/2 and

ν(�, z) = 2

3
�

−1(|ζ̃ (z)|3/2 − |ζ(z)|3/2)

= �
−1

(∫ x̃+

z

√
Ẽ − V (t)dt −

∫ x+

z

√
E − V (t)dt

)
.
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Hence μ′(z) = −2
√

E − V (z) and

∂zν(�, z) = E − Ẽ

�

(√
E − V (z) +

√
Ẽ − V (z)

)−1
,

∂2
z ν(�, z) = E − Ẽ

2�
V ′(z)(E − V (z))−1/2(Ẽ − V (z))−1/2

× (√
E − V (z) +

√
Ẽ − V (z)

)−1
.

(6) The leading asymptotic term on the interval ]x1, x+ −δ[. Let us check the contribution
to the matrix element coming from the interval [x1, x+ − δ]. The leading asymptotic term
in the expansion of ψ is given in (16). We also need the asymptotic behavior of the Airy
function (25) and the fact that the function f/ζ is continuous and hence bounded on the
interval [x1, x+]. We conclude that

ψ ∼
(

ζ

f

)1/4

Ai(�−2/3ζ ) = �
1/6

√
π |f |1/4

cos

(
2

3
�

−1|ζ |3/2 − π

4

)
+ 1

|f |7/4
O(�7/6).

Observe that

�
4/3

∫ x+−δ

x1

dx

|f |2 = δ−1O(�4/3),

and on the interval [x1, x+ − δ],
(Ẽ − V )−1/4 = (E − V )−1/4(1 + δ−1O(�)).

From the boundedness of W and from an estimate similar to (32) it follows that

∫ x+−δ

x1

Wψψ̃ dx =
∫ x+−δ

x1

W

(
ζ

f

)1/4(
ζ̃

f

)1/4

Ai(�−2/3ζ )Ai(�−2/3ζ̃ )dx + O(�4/3)

= �
1/3

π

∫ x+−δ

x1

W

|f |1/2
(1 + δ−1O(�))

× cos

(
2

3
�

−1|ζ |3/2 − π

4

)
cos

(
2

3
�

−1|ζ̃ |3/2 − π

4

)
dx

+ δ−1O(�4/3).

Using the asymptotic behavior (33) we have

∫ x+−δ

x1

Wψψ̃ dx = �
1/3

2π

∫ x+−δ

x1

W√
E − V

cos

(
2

3
�

−1(|ζ |3/2 − |ζ̃ |3/2)

)
dx

+ δ−1O(�4/3). (34)

(7) The argument of the cosine on the interval ]x1, x+ − δ[. Let us show that for x ∈
[x1, x+ − δ],

2

3
�

−1(|ζ |3/2 − |ζ̃ |3/2) = −2πk

T
τ(x) + δ1/2O(1) (35)
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where τ(x) was defined in (8). We have

2

3
�

−1(|ζ |3/2 − |ζ̃ |3/2) = �
−1

(∫ x+

x

√
E − V dt −

∫ x̃+

x

√
Ẽ − V dt

)

= �
−1

(∫ x+−δ

x

(√
E − V −

√
Ẽ − V

)
dt

+
∫ x+

x+−δ

√
E − V dt −

∫ x̃+

x+−δ

√
Ẽ − V dt

)
.

Set temporarily

g(y) =
∫ y

x+−δ

√
V (y) − V (t)dt.

Then for y lying between x+ and x̃+ it holds

|g′(y)| =
∣∣∣∣1

2

∫ y

x+−δ

V ′(y)√
V (y) − V (t)

dt

∣∣∣∣ ≤ 1

2
const ·

∫ y

x+−δ

dt√
y − t

≤ const · √|x+ − x̃+| + δ.

Hence

∣∣∣∣
∫ x+

x+−δ

√
E − V dt −

∫ x̃+

x+−δ

√
Ẽ − V dt

∣∣∣∣ = |g(x+) − g(x̃+)|

≤ const · √|x+ − x̃+| + δ |x+ − x̃+|
= δ1/2O(�). (36)

Furthermore,

√
E − V −

√
Ẽ − V − E − Ẽ

2
√

E − V
= (E − Ẽ)2

2(
√

E − V +
√

Ẽ − V )2
√

E − V

≤ (E − Ẽ)2

2(E − V )3/2

and ∫ x+−δ

x

(E − Ẽ)2

(E − V )3/2
dt = δ−1/2O(�2).

From (24) it follows that

�
−1(Ẽ − E) = 2πk

T
+ O(�)

where T is the period of the classical motion, see (7). Altogether this means that

�
−1

∫ x+−δ

x

(√
E − V −

√
Ẽ − V

)
dt
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= −
(

2πk

T
+ O(�)

)∫ x+−δ

x

dt

2
√

E − V (t)
+ δ−1/2O(�)

= −2πk

T

∫ x+

x

dt

2
√

E − V (t)
+ δ1/2O(1) + δ−1/2O(�). (37)

Relations (36) and (37) jointly imply (35).
(8) The final step. From (34) and (35) we derive that

∫ x+−δ

x1

Wψψ̃ dx = �
1/3

2π

(∫ x+−δ

x1

W(x)√
E − V (x)

× cos

(
2πk

T
τ(x) + δ1/2O(1) + δ−1/2O(�)

)
dx + δ−1O(�)

)

= �
1/3

2π

(∫ x+

x1

W(x)√
E − V (x)

cos

(
2πk

T
τ(x)

)
dx + δ1/2O(1)

)
. (38)

The interval [x− + δ, x1] can be treated similarly. We have

∫ x1

x−+δ

Wψψ̃ dx = κκ̃
�

1/3

2π

(∫ x1

x−

W(x)√
E − V (x)

cos

(
2πk

T
τ−(x)

)
dx + δ1/2O(1)

)

where

τ−(x) = 1

2

∫ x

x−

dy√
E − V (y)

= 1

2
T − τ(x).

Taking into account also (26) and (27) we finally find that

∫ x1

x−+δ

Wψψ̃ dx = �
1/3

2π

(∫ x1

x−

W(x)√
E − V (x)

cos

(
2πk

T
τ(x)

)
dx + δ1/2O(1)

)
. (39)

From the boundedness of W and relations (28), (38) and (39) it follows that

∫
R

Wψψ̃ dx = �
1/3

2π

(∫ T

0
W(q(t))eikωt dt + δ1/2O(1)

)
. (40)

As a particular case, with W(x) = 1 and k = 0, we have

∫
R

ψ2 dx = �
1/3

2π
(T + δ1/2O(1)). (41)

The same relation holds also for the squared norm of ψ̃ .
Relations (40) and (41) imply that there exists c ≥ 0 such that for all sufficiently small

positive δ and all n, n ≥ n0(δ), it holds

∣∣∣∣〈n|W(x)|n + k〉 − 1

T

∫ T

0
W(q(t))eikωtdt

∣∣∣∣ ≤ cδ1/2.

Since δ is arbitrary this concludes the verification of the limit (6).



Int J Theor Phys (2007) 46: 2688–2707 2707

Acknowledgements The authors wish to acknowledge gratefully partial support from the following grants:
grant No. 201/05/0857 of the Grant Agency of the Czech Republic (P.Š.), grant No. MSM 6840770010 of the
Ministry of Education of the Czech Republic (O.L.), and grant No. LC06002 of the Ministry of Education of
the Czech Republic (the both authors).

References

1. Bellissard, J.: In: Albeverio, Blanchard (eds.) Trends and Developments in the Eighties, pp. 1–106. Word
Scientific, Singapore (1985).

2. Bellissard, J., Vittot, M.: Ann. Inst. H. Poincaré 52, 175 (1990)
3. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Moscow University Press, Moscow (1983) (in

Russian). English transl. Kluwer, Dordrecht, 1991
4. Brummelhuis, R., Uribe, A.: Commun. Math. Phys. 136, 567 (1991)
5. Charbonnel, A.-M.: Ann. Inst. H. Poincaré 56, 187 (1992)
6. Combescure, M., Robert, D.: Ann. Inst. H. Poincaré 61, 443 (1994)
7. De Bièvre, S., Renaud, J.: J. Phys. A: Math. Gen. 29, L585 (1996)
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